Summary of the usage rules for the calculation of position lines by altitude with the F-table

1. Enter the dead reckoning position (ϕ_g , λ_g), the ϕ_g at the nearest full degree of latitude ϕ_a and the observed altitude $\underline{*}$.

2. Enter the hour angle calculated in the usual way, rounded down to the next value divisible by 4^{m} and the δ .

3. Calculate h_b from observed (<u>*</u>) and total correction (Gb.).

4. Extract P with t_a and δ from Table F I (or Table F XI).

5. Extract U, V, and Gr. δ with t_a and ϕ_a from Table F I.

6. Determine the quadrant of the Azimuth.

Rule: If t_ö, then azimuth is East.

If t_w, then azimuth is West.

If $t > 6^h$, then azimuth is from the upper pole.

If $t < 6^h$, $|\delta$ has the same sign as φ and is larger than Gr. δ , then azimuth is from the upper pole. $|\delta$ has the same sign as φ and is smaller than Gr. δ , then azimuth is from the lower pole. $|\delta$ has the opposite sign φ , then azimuth is from the lower pole.

7. Designate U.

Rule: If $t < 6^h$, then U same as ϕ .

If $t > 6^h$, then U opposite φ .

Generate δ + U (add algebraically).

8. Take the log sin from the value calculated after step 7 from table F II and add to V.

9. With this sum take the altitude from table F II.

10. With h and P take azimuth from Table F I. The sought after P-value is located here below the dotted line, for more accurate azimuth determination use Table F XI.

11. Take the hour angle correction (Correction for t) from table F III with ϕ_a , Az and the seconds neglected in the rounding of the hour angle (Δt).

Rule: Correction for t = + if calculated with too great an assumed t,

Correction for t = -if calculated with too small an assumed t.

12. Plotting position lines.

a) Without baseline shift:

The starting point for the plotting of all observations is ϕ_a and λ_g (Examples 1 and 2).

b) With baseline shift:

Either

for all observations apply to the O_a [assumed position] of the last observation the corrected latitude difference and signs of the positions established this way

or

take the latitude corrections (Correction for ϕ) from Table F IV with Az and ϕ_a - ϕ_g and apply them to the calculated altitudes, then plot all observations from the dead reckoning position for the last observation made (See Examples 3b and 4b).